ADLINK tegraBot
People-tracking robot according to cloth type using AI
About the project
The purpose of this pkg is to demonstrate the abilities of ADLINK M200-JT2 computing platform. * ADLINK M200-JT2 Edge Inference Platform: with NVIDIA® Jetson™ TX2 [link]
-
Video
-
Slides
https://github.com/Adlink-ROS/adlink_tegrabot/blob/master/document/ADLINK_tegraBot.pdf (not available ATM)
Dev Team
- Ewing Kang (ewing.kang@adlinktech.com)
- Alan Chen (alan.chen@adlinktech.com)
- Chester Tseng (chester.Tseng@adlinktech.com)
- Bill Wang (bill.wang@adlinktech.com)
- Ryan Chen (ryanjb.chen@adlinktech.com)
ADLINK Technology, Inc
Advanced Robotic Platform Group
License
Apache 2.0
Copyright 2018 ADLINK Technology, Inc.
Tutorial
Prerequisites
Hardware
-
Depth camera: Realsense D400 / Astra / Astra Pro
Source: realsense, astra ros
Binary for Astra:$ sudo apt-get install ros-kinetic-astra*
Notice:- About RealSense SDK 2.0, we highly recommed binary version.
- Remember to create udev. If possible, please buy Astra instead of Astra Pro!
Testing:
$ roslaunch realsense2_camera demo_pointcloud.launch
-
YDLidar
Source: https://github.com/EAIBOT/ydlidar
Notice: Remember to laod udev. Could be replaced by any type of lidar.
Testing:$ roslaunch ydlidar x4.launch
ROS
-
Navigation
Installation:$ sudo apt-get install ros-kinetic-navigation*
Source: https://github.com/ros-planning/navigation
Notice: if "replan" mode of global planner is malfunctioned, please compile whole pkgs from source.
Testing:$ roslaunch spencer_people_tracking_launch tracking_on_bagfile.launch
-
Turtlebot2
Installation:$ sudo apt-get install ros-kinetic-turtlebot
Source: https://github.com/turtlebot/turtlebot
AI tracking
You need these package installed for the tensorflow_object_detector node to work CUDA v8.0 cudnn v6.0 libuvc (training only) protoc 3.3 (notice the version)
There are 4 packages working together that made the people tracking using AI possible.
cd ~/catkin_ws/src
git clone https://github.com/Adlink-ROS/adlink_tegrabot https://github.com/Adlink-ROS/tf_ai_tracker.git https://github.com/Adlink-ROS/tegrabot_description.git https://github.com/Adlink-ROS/tensorflow_object_detector.git
- adlink_tegrabot: main launch collection of the tegrabot
- tegrabot_description: robot model (urdf) for rviz
- tensorflow_object_detector: TensorFlow classifier
- tf_ai_tracker: people tracking controller
Running the demo
Before your first run
- (optional) Mapping & Time Synchronizing
Host launch
- ROS:
$ roslaunch adlink_tegrabot NeuronBot_Demo_Host_AIO.launch
- shell script: `$ ./PATH_TO_WORKSPACE/adlink_tegrabot/autostart/NeuronBot_Demo_Host_AutoStart.sh)
visualization
rviz file neuronbot_demo_client.rviz is in the rviz folder
Optional ROS package
-
SPENCER
Binary: https://github.com/spencer-project/spencer_people_tracking#installation-from-l-cas-package-repository
Source: https://github.com/spencer-project/spencer_people_tracking#installation-from-source
Notice: Unless you want to use HOG+SVM [CUDA required], we highly recommend binary version. -
leg_tracker
Source: https://github.com/angusleigh/leg_tracker
Notice: The kinetic branch only supports OpenCv 3.3 and higher ver.
Testing: $ roslaunch leg_tracker demo_stationary_simple_environment.launch
Training your own model
Please check our wiki for more information.
Project status
v1.0
Roadmap
- [ ] Multi robot example